

The AndaSol Project

Ulf Herrmann, Michael Geyer

Rainer Kistner

FLABEG Solar Int. GmbH

Solar Millennium AG

Workshop on Thermal Storage for Trough Power Systems

February 20 - 21, 2002

FLABEG Solar International GmbH

The Royal Decree 2818 / 841

- The Royal Decree 841/2002 published in September 2002
- 12 €cent/kWh will be paid for solar thermal generated electricity + market price

Meteostation was set up in February 1999

Monthly Total DNI in First Year

Process Scheme

EuroTrough Collector Design

Solar Field Layout

- 624 Collectors
- Collector length: 148.5 m
- 4 Collectors per Loop
- 156 Loop
- Total Collector area of 510.120 m²

Solar

Power Block Parameter

Turbine Type Condensing turbine single reheat and six steam extractions

Nominal Capacity 49.9 MW

Total Parasitcs5.0 MW

• Plant efficiency 37.5%

Turbine Inlet Conditions 100 bar 370°C
 reheat 16.5 bar 370°C

Nominal Steam Flow 59 kg/s

Design Back Pressure 0.08 bar

2-Tank Molten Salt Storage

Storage Parameter

Type: 2-Tank Molten Salt Storage

Storage Fluid: Nitrate salt mixture

(60% NaNO₃ and 40% KNO₃)

Melting Point of Fluid: 221°C

Storage Capacity: 880 MWh

Storage Tank Size: 13 m hight

38 m diameter

• Salt Mass: 25 000 tons

Flow Rate: 948 kg/s

Cold Tank Temperature: 292°C

Hot Tank Temperature: 384°C

Status of Storage System

- Subontract was given to Nexant
 - Optimitzation of storage parameter
 (Results will be presented by Bruce Kelly)
 - Support of specifying the EPC bid package
- Next step: Getting EPC quotes for storage system

Performance on a Clear Summer Day

Annual Distribution of Electricity Output

Annual Performance Data

 Annual Insolation on Solar Field 	1,105,430 MWh/a
 Total Heat from Solar Field 	510,030 MWh/a
Thermal Efficiency peak	70%
	46.1%
Annual Electricity Sold to the Grid	157,206 MWh/a
 Annual Parasitcs Received from the Grid 	4,307 MWh/a
 Solar to Electric Efficiency peak 	25%
	14.7%
Full Load Hours	3144 h
Operation from Storage	1074 h
Annual Water Consumption	612,000 m ³ /a
 CO₂ Savings Compared to Coal Plant 	152,000,000 kg/a

